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Abstract. Cheney’s copying garbage collector is regarded as a chal-
lenging test case for formal approaches to the verification of imperative
programs with pointers. The algorithm works for possibly cyclic data
structures with unrestricted sharing which cannot be handled by stan-
dard separation logics. In addition, the algorithm relocates data and
requires establishing an isomorphism between the initial and the final
data structure of a program run.
We present an implementation of Cheney’s garbage collector in the graph
programming language GP 2 and a proof that it is totally correct. Our
proof is shorter and less complicated than comparable proofs in the liter-
ature. This is partly due to the fact that the GP 2 program abstracts from
details of memory management such as address arithmetic. We use sound
proof rules previously employed in the verification of GP 2 programs
but treat assertions semantically because current assertion languages for
graph transformation cannot express the existence of an isomorphism
between initial and final graphs.

1 Introduction

Poskitt and Plump developed Hoare-style proof systems for verifying the partial
and total correctness of graph programs and showed that their proof calculi
are sound with respect to the operational semantics of graph programs in the
language GP 2 [13, 12]. In these calculi, pre- and postconditions of programs are
so-called E-conditions which extend nested graph conditions with support for
expressions. E-conditions are limited to specify first-order graph properties and
cannot express non-local properties such as connectedness or the existence of
arbitrary-length paths. M-conditions [15] overcome this limitation in that they
express monadic second-order properties of graphs.

In this paper, we present the verification of a graph program that cannot be
proved correct by using E- or M-conditions because its correctness requires to
establish a certain isomorphism between input and output graphs. We implement
Cheney’s copying garbage collector [3] in the graph programming language GP 2
and prove that it is totally correct. Cheney’s algorithm is regarded as a challenge
for formal approaches to verifying pointer programs. This is because it works
for possibly cyclic data structures with unrestricted sharing which cannot be
handled by standard separation logics [16, 5]. In addition, the algorithm relocates
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data which requires establishing an isomorphism between the initial and the final
data structure of a program run.

While cycles and unrestricted sharing are not a problem for formal assertions
based on nested graph conditions, the existence of an isomorphism between
initial and final graphs of program runs cannot be expressed with such assertions.
Therefore we treat assertions semantically, without a formal language, but use
sound proof rules that were previously employed in GP 2 verification.

The remainder of this paper is structured is follows: Section 2 briefly describes
the graph programming language GP 2, followed by Section 3, where we intro-
duce the basic notions of graph program verification. In Section 4, we present an
implementation of Cheney’s copying garbage collector in GP 2. In Section 5, we
precisely specify the garbage collector by pre- and postconditions. In Section 6,
we prove that our implementation is partially correct, will terminate and cannot
fail. In Section 7, we argue that our proof of partial correctness is shorter and
less complicated than comparable proofs in the literature. Finally, we conclude
and give some topics for future work in Section 8.

2 Graph Programs

We briefly describe a subset of the graph programming language GP 2 that
is sufficient for our case study. A full definition of GP 2, including a formal
operational semantics, can be found in [11]. The language is implemented by a
compiler generating C code [1].

The principal programming constructs in GP 2 are graph-transformation
rules labelled with expressions. For example, the program cheney in Fig. 2 con-
tains the declarations of five rules. Rules operate on host graphs whose nodes
and edges are labelled with heterogeneous lists of integers and character strings.
Variables in rules are typed, where list is the most general type. In particular,
integers and strings are considered as lists of length one. By abuse of terminology,
we call items unlabelled if they are labelled with the empty list.

Besides a list label, nodes and edges may carry a mark which is one of the
values green, blue, grey and dashed (where grey and dashed are reserved
for nodes and edges, respectively). Marks are convenient to highlight items in
input or output graphs, and to record which items have been visited during a
graph traversal. For convenience, we sometimes refer to unmarked nodes as white
nodes.

Moreover, nodes in rules and host graphs may be distinguished as roots. For
example, in the rule copy root of Fig. 2, nodes with a thick black border are
roots. While roots are normally used to restrict the set of rule matches [1], we
use them in this paper to specify reachable subgraphs.

The grammar in Fig. 5 of Appendix A gives the abstract syntax of graph pro-
grams in our subset (without the syntax of rule declarations). A program consists
of a number of rule declarations and exactly one declaration of a main command
sequence. The category RuleId refers to declarations of rules in RuleDecl. The
call of a rule set {r1, . . . , rn} non-deterministically applies one of the rules whose



left-hand graph matches a subgraph of the host graph. Rule matching is injec-
tive and involves instantiating the variables in rules with host graph labels. The
call fails if none of the rules is applicable to the host graph. A loop command
R! applies the rule set R repeatedly until it fails. When this is the case, R!
terminates with the graph resulting from the last successful application of R.

The meaning of a graph program P is the function JP K mapping an input
graph G to the set JP KG of all possible outcomes of executing P on G. Possible
outcomes include the value fail which indicates a failed program run, and the
value ⊥ which indicates divergence. We say that program P can diverge from
graph G if there exists an infinite program run starting from G.

Writing G⊕ for the set of all host graphs extended with the values fail and
⊥, the semantic function J K : ComSeq→ (G → 2G

⊕
) is defined by

JP KG = {X ∈ (G ∪ {fail}) | 〈P, G〉 +→X} ∪ {⊥ | P can diverge from G}

where → is the transition relation on configurations defined in Appendix B.

3 Verification of Graph Programs

As mentioned in the Introduction, we treat assertions semantically and express
pre- and postconditions in ordinary mathematical language (similar to [10]). As
is usual in Hoare logic, we use triples {c} P {d} to state that program P is
partially correct with respect to precondition c and postcondition d. Intuitively,
this means that for every graph G satisfying c, any graph H resulting from
executing P on G will satisfy d.

Given a graph G and some assertion c, we write G |= c if G satisfies c. If, in
addition to partial correctness, P cannot diverge or fail from graphs satisfying
c, the program is totally correct.

Definition 1 (Partial and total correctness [14]). A graph program P is
partially correct with respect to a precondition c and a postcondition d, if for
every host graph G and every graph H in JP KG, G |= c implies H |= d.

P is totally correct with respect c and d if it is partially correct and for every
host graph G such that G |= c, JP KG ∩ {⊥, fail} = ∅.

We write |= {c} P {d} if P is partially correct with respect to c and d.
In Hoare logic, proof rules in the form of axioms and inference rules are used
to construct proof trees decorated with Hoare triples. Proof trees are defined
in Definition 8 of Appendix C. The rules we use in this paper are shown in
Fig. 1; they are taken from [12, 13, 15] except for [rule app], which replaces an
axiom involving the weakest liberal precondition. As our semantic assertions do
not come with an algorithm for calculating the weakest liberal precondition,
determining and proving this condition would unnecessarily inflate our proofs.

Property App(R) in rule [alap] expresses that the rule set R is applicable.
By the semantics of the as-long-as-possible command, R is not applicable to any
graph resulting from the loop R!



[ruleapp]
|= {c} r {d}
{c} r {d} [ruleset]

{c} r {d} for all r ∈ R
{c} R {d}

[alap]
{inv} R {inv}

{inv} R! {¬App(R) ∧ inv} [comp]
{c} P {d} {d} Q {e}

{c} P ;Q {e}

[cons]
c ⇒ c′ {c′} P {d′} d′ ⇒ d

{c} P {d}

Fig. 1. Proof rules for graph program verification

Definition 2 (App(R)). Let R be a set of rules. A graph G satisfies App(R)
if and only if there exists a graph H such that G⇒R H.

The proof rules we use in this paper are known to be sound with respect to
GP 2’s operational semantics.

Theorem 1 (Soundness of proof rules [12]). Given a program P and as-
sertions c and d,

` {c} P {d} implies |= {c} P {d}.

Here ` {c} P {d} means that there exists a proof tree with root {c} P {d}.

4 Cheney’s Copying Garbage Collector in GP 2

Cheney’s garbage collector assumes two disjoint, equally large regions of mem-
ory where the first region holds the data structure to be garbage collected and
the second region consists of free cells. The structure that is reachable from the
root cell in the first area is copied to the second region. Subsequently, the com-
plete first region can be freed by the memory management system. Adopting
this technique, we construct the graph program cheney in Fig. 2 to garbage
collect an input graph. We model the free cells assumed by Cheney’s method
as unlabelled isolated nodes. This is similar to the store model used by [6] for
pointer verification.

As input, our program assumes a graph that can be partitioned into two
subgraphs: the graph to be garbage collected, and the graph that models a
region of free memory cells. We differentiate the two regions by colours. White
and grey nodes are used for the first region while green and blue nodes are used
for the second region. The root cell in the first region is a unique root node.
Hence, garbage collection involves identifying the subgraph reachable from the
root node and copying it to the unlabelled subgraph. In Fig. 3, we give an
example of the execution of cheney.

As in [5, 16], we do not model the subsequent freeing of cells in the first
region. This would be easy to achieve by a few rules which change all white and
grey nodes into unlabelled green nodes and delete all edges between these nodes.



Main = copy root; copy items!; {copy edge, copy loop}!; disconnect!
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Fig. 2. Graph program cheney
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Fig. 3. A graph before and after the execution of cheney

5 Case Study: Specification

We assume that the input graph of the program cheney can be partitioned into
two subgraphs as described above. This partition will persist during program
execution. Given an input graph G, we use OldG and NewG to refer to these
subgraphs, where OldG is to be garbage collected.

Definition 3 (OldG and NewG). Given a graph G, we denote by OldG the
subgraph consisting of all unmarked and grey nodes and all edges between them.



Also, NewG denotes the subgraph consisting of all green and blue nodes and all
edges between them.

The aim of program cheney is to copy to NewG the subgraph of OldG con-
sisting of all nodes and edges that are reachable from the root. We denote this
subgraph by Reach(OldG).

Definition 4 (Reach(G)). Given a graph G with a unique root node v, we de-
note by Reach(G) the subgraph of G consisting all nodes and edges reachable
from v by directed paths.

As the garbage collector copies a subgraph of OldG to NewG, its formal spec-
ification by pre- and postcondition needs to require an isomorphism between
Reach(Old) in the input graph and Reach(New) in the result graph. However,
program cheney uses marks to distinguish Old and New and reachable sub-
graphs. Therefore, we introduce graph morphisms that preserve labels, sources,
targets, and roots, but ignore marks.

Definition 5 (Liberal graph morphism). Given graphs G and H, a liberal
graph morphism f : G→ H is a pair of mappings f = 〈fV : VG → VH , fE : EG →
EH〉 that preserve sources, targets, labels and roots.

Then, an isomorphism is a bijective liberal morphism that reflects root nodes.

Definition 6 (Isomorphism). A liberal graph morphism f : G → H is an
isomorphism if fV and fE are bijective and if for each node v in G, v is a root
if and only if fV (v) is a root.

Given an input graph Start, program cheney has to produce a graph Result

such that Reach(OldStart) is isomorphic to Reach(NewResult). We specify the pre-
and postcondition of cheney as follows.

Precondition. Each node in Start is either unmarked or green, and the num-
ber of unmarked and green nodes is the same. All edges are unmarked. All
green nodes are isolated and unlabelled. There is a unique root node which is
unmarked.

Postcondition. Each node in Result is either in OldResult or NewResult, and
the number of nodes in OldResult and NewResult is the same. There are no edges
connecting NewResult and OldResult. There is a unique grey root node in OldResult

and a unique blue root node in NewResult. In Reach(OldResult), the nodes are
grey and the edges are dashed ,while other items in OldResult are unmarked.
In Reach(NewResult), the nodes are blue and the edges are unmarked, while all
other nodes in NewResult are isolated green nodes which are unlabelled. Moreover,
Reach(OldStart) and Reach(NewResult) are isomorphic.



6 Case Study: Proof

6.1 Partial Correctness

To prove that program cheney is correct with respect to its pre- and postcon-
dition, we consider an arbitrary execution of cheney that transforms an input
graph Start satisfying the precondition into a result graph Result. Our proof
rests on a property invStart, defined in Definition 7, which holds for Start and
is an invariant for all five rules of cheney (shown in Lemma 2). Thus invStart
holds for each graph in the execution sequence Start⇒∗ Result.

In particular, for each graph G such that Start ⇒∗ G ⇒∗ Result, invStart
asserts the existence of two isomorphisms: one between OldStart and OldG and
another one between GreyG and BlueG. Here GreyG is the subgraph of G con-
sisting of all grey nodes and all dashed edges between them, and BlueG is
the subgraph of G consisting all blue nodes and all edges between them. We
then establish that GreyResult equals Reach(OldResult) while BlueResult equals
Reach(NewResult).

Roughly, OldStart and OldG are isomorphic because (1) no rule deletes or
creates nodes, (2) no rule deletes, creates or relabels edges within Old (any edge
created or deleted is incident to a blue node), (3) no rule can change the colour
or label of a grey node, and (4) rules can change unmarked nodes only by turning
them grey (while preserving the label).

Moreover, GreyG and BlueG are isomorphic because (1) GreyStart = ∅ =
BlueStart, (2) copy root creates one-node graphs Grey and Blue whose nodes
are roots with the same label, and an unlabelled edge connecting Grey and
Blue, called an isomorphism edge, which represents the node mapping of the
isomorphism, (3) copy items extends both Grey and Blue by one edge and its
target node, where the edges have the same label and sources connected by an
isomorphism edge, and creates an isomorphism edge between the target nodes,
(4) copy edge extends Grey and Blue by one edge each, where the edges have
the same label and have their sources resp. targets connected by an isomorphism
edge, (5) copy loop works similar to copy edge except that the new edges are
loops, and (6) disconnect removes an isomorphism edge and hence does not
alter Grey or Blue.

We use these isomorphisms to show that Reach(OldStart), Reach(OldResult)
and Reach(NewResult) are all isomorphic, thus establishing the correctness of
the garbage collector. We remark that verifying the existence of an isomorphism
between (subgraphs of) the start graph and the result graph of a graph program
execution is not possible with the approach of [13, 14, 12, 15].

A proof tree for the partial correctness for cheney is provided in Fig. 4.
The assertions in the tree are defined in Definition 7. One of these assertions
is invStart which acts as an invariant of cheney (see Lemma 2). We then give
arguments about leaves in the proof tree in Lemma 3. The proof tree contains
some applications of the proof rule [cons] whose validity is obvious by proposi-
tional logic, such as c ∧ d⇒ c. We do not justify such applications, but we prove
in Lemma 4 implications that are not obvious.



Definition 7. Let G be a graph. We define the following assertions:

invStart : (a) every node in G is either in OldG or NewG, where
OldG and NewG have the same number of nodes

(b) there is a unique root node in OldG and at most one
root node in NewG

(c) each edge in G is either unmarked or dashed
(d) all grey nodes are in Reach(OldG)
(e) all dashed edges are in Reach(OldG)
(f) all blue nodes are in Reach(NewG)
(g) all green nodes are isolated unlabelled nodes
(h) there exists an isomorphism f : GreyG → BlueG

where GreyG is the subgraph of G consisting all
grey nodes and all dashed edges between them while
BlueG is the subgraph of G consisting all blue nodes
and all edges between them

(k) each edge e connecting OldG and NewG is an iso-
morphism edge, that is, an unlabelled and unmarked
edge satisfying fV (sG(e)) = tG(e)

(l) OldG is isomorphic to OldStart

reachOldGrey : in Reach(OldG), all nodes are grey
reachOldDashed : in Reach(OldG), all edges are dashed
reachNewBlue : in Reach(NewG), all nodes are blue
nogreynode : there is no grey node
nobluenode : there is no blue node
nodashededge : there is no dashed edge
noconnect : there are no edges between OldG and NewG

connect : if fV (v1) = v2 then there exists an edge from v1 to
v2

rootOldUnmark : there exists an unmarked root node in OldG

rootOldGrey : there exists a grey root node in OldG

norootNew : there is no root node in NewG

rootNewBlue : there exists a blue root node in NewG

From now on we denote the pre- and postcondition stated in Section 5 by
precondition and postcondition, respectively.

Lemma 1 (Pre- and postcondition). Using the assertions of Definition 7,
the following holds:

precondition ⇔ invStart(a, b, c, g) ∧ nogreynode ∧ nobluenode ∧ nodashededge

∧ rootOldUnmark ∧ norootNew

postcondition ⇔ invStart(a, b, d, e, f, g, h, l) ∧ noconnect ∧ reachOldGrey

∧ reachOldDashed ∧ reachNewBlue

Proof. The first sentence of precondition is equivalent to invStart(a)∧nogrey-
node ∧nobluenode, while the second sentence equivalent to invStart(c)∧no-
dashededge. Then, the next sentence is equivalent to invStart(g), and the last
sentence is equivalent to invStart(b) ∧ rootOldUnmark ∧ norootNew.



For postcondition, note that we write the result graph as Result. The
first sentence in postcondition is equivalent to invStart(a), while the second
sentence is equivalent to noconnect. Then, the next sentence is equivalent to
invStart(b) ∧ rootOldGrey ∧ rootNewBlue. With the support of invStart(a), the
fourth sentence is equivalent to reachOldGrey ∧ reachOldDashed ∧ invStart(d)
∧invstart(e), and the fifth sentences is equivalent to reachNewBlue ∧ invStart(f)
∧invStart(g). The last sentence then equivalent to invStart(h) ∧ invStart(l). ut

Lemma 2 (invStart is invariant for all rules). The following holds:

|= {invStart} copy root {invStart} |= {invStart} copy loop {invStart}
|= {invStart} copy items {invStart} |= {invStart} disconnect {invStart}
|= {invStart} copy edge {invStart}

Proof. We proof the lemma by checking each point of invStart.
(a) The application of any rule in cheney does not add or remove any node.

It may change the colour of a node from unmarked to grey or from green to blue,
which does not change the number of vertices in OldG and NewG.

(b) Changes in root node only shown in copy root, which change unmarked
root node to grey root node and add a blue root node. This means the number
of root nodes in OldG never change after any rule application, while the number
of root nodes in NewG can increase to one after the application of (copy root),
but never change after the application of other rules.

(c) Every edge in each rule in the lemma is either unmarked or dashed.
Therefore, for all rules in the lemma, if there is no other marks for edges exists
before a rule application, they must not exist after the rule application.

(d) We only give the proof for copy items and copy edge as the other rules
do not change grey nodes and the triples must hold. For copy root, the rule
change an unmarked root node to a grey root node. From (b) we know that
there is only one root node in OldG, which implies there is no other root node
than this new grey root node. The new grey root node is reachable from itself.
Then for copy items, the rule change an unmarked node, which is reachable
from a grey node, to grey. This means the new grey node is reachable from the
root node as well.

(e) We can see that in every rule in the lemma, if there exists a dashed
edge then its source and target must be grey. Since grey nodes are in Reach(G),
dashed edges must also be in Reach(OldG).

(f) Similar to the proof for (d).
(g) There is no rule in the lemma transform an isolated unlabelled green node

into a green node that incident to an edge or not unlabelled.
(h) In every rule in the lemma, a production of a new grey node is always

accompanied with a production of a new blue node. This also holds for dashed
edge and an edge between blue nodes. Then, the new grey node can map to
the new blue node, and the new dashed edge can map to the new edge as an
addition to the morphism f . The mappings are isomorphism as they preserve
sources, targets, labels, and root.
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(k) The edge between Old and New can be inserted only by rules copy root

and copy items. This means that the edge must be an isomorphism edge.
(l) Every rule in the lemma does not add or delete any unmarked or grey

nodes, or edges between them. Modification of these elements exists, where un-
marked nodes can transform into grey nodes and unmarked edges can transform
into dashed edges while labels are still preserved. However, the marks indicate
no changes in area (New or Old) membership, and there are no changes in ad-
jacency. Hence, sources, targets, and labels are preserved. ut

Lemma 3. For assertions X2, X3, X4, X5, X7 as defined in Fig. 4, the follow-
ing holds:

(1) |= {X2} copy root {X3} (4) |= {X5} copy loop {X5}
(2) |= {X4} copy items {X4} (5) |= {X7} disconnect {X7}
(3) |= {X5} copy edge {X5}

Proof. Recall that by Lemma 2, each rule preserves invStart.
(1) We can see that the application of copy root preserves the satisfiability

of nodashededge. The assertion rootOldUnmark in the precondition guarantees
rootOldGrey by the construction of copy root. Then because the rule creates a
new rooted node in the New subgraph, norootNew yields rootNewBlue after the
rule application. connect must holds because the new edge must be the only
one connecting the two areas as noconnect holds in the precondition. It also
guarantees reachNewBlue because in New subgraph, the new blue root node is
an isolated node, so it is the only node that is reachable from the root node.

(2) We can see that copy items does not change any root, grey, or blue node,
so it preserves rootOldGrey ∧ rootNewBlue as well. Then, connect asserts there
exists an edge between v1 and v2 for all v1 and v2 such that fv(v1) = v2. From
invStart, we know that v1 is a grey node and v2 is a blue node. copy items yields
a new grey and blue node with the same label and there is an edge between them.
Hence, connect is preserved. The rule copy items also changes the number of
blue node, so we will need to see how it affects reachNewBlue. Follows from
point (f) of invStart, the blue node in the left-hand side of copy items must
be in Reach(NewG). Therefore, the new blue node in the right-hand side is in
Reach(NewG) as well, so that reachNewBlue still holds.

(3) Because there are no changes in nodes, copy edge preserves rootOldGrey
∧ rootNewBlue. The adjacency between two grey nodes and between a grey
and a blue node are not changed by copy edge, so connect ∧ reachOldGrey
still holds. There is a change in adjacency between two blue nodes, but it still
preserves reachNewBlue as if the change makes Reach(NewG) gets an additional
node, it will be a blue node.

(4) The rule does not add or remove any node, also any edge between
two nodes, so it preserves rootOldGrey ∧ rootNewBlue ∧ reachNewBlue ∧
reachNewGrey ∧ connect.

(5) Because disconnect does not change any node, also any edge between
same-coloured nodes, it preserves rootOldGrey∧rootNewBlue∧reachNewBlue∧
reachOldGrey∧reachOldDashed. ut



Lemma 4 (Validity of implications). For assertions X1, X4, X5, X6, X7,
Y1 as defined in Fig. 4, the following holds:

(1) precondition⇒ X1 (4) X5 ∧ ¬App(copy loop)⇒ X6
(2) Y1⇒ postcondition (5) X4 ∧ ¬App(copy items)⇒ X5
(3) X5 ∧ ¬App(copy edge)⇒ X6 (6) X7 ∧ ¬App(disconnect)⇒ Y1

Proof. (1) We will show that precondition in Lemma 1 implies X1. In X1, we
have additional conjunction point (d), (e), (f), (h), (k), and (l) of invStart. Point
(l) is clearly satisfied as G is Start. Then the other points must hold because
nogreynode ∧ nobluenode ∧ nodashedge implies the nodes or edges that must
satisfies certain requirement do not exist so nothing negate those points. Then,
noconnect holds because New area only consists of isolated nodes.

(2) By simplification, it is clear that Y1 implies postcondition.
(3, 4) Similar as above, the non-applicability of copy edge and copy loop

implies that there is no unmarked edges (including loops) where its source and
target is a grey node. Therefore, reachOldGrey implies all nodes in Reach(OldG)
are grey and the non-applicability implies that edges between these nodes are
not unmarked, i.e. all edges between these nodes are dashed, reachOldDashed
holds. Hence, X6 holds.

(5) connect and isomorphism (h) in invStart assert that each grey node is
a source for an edge where a blue node with the same label as the grey node is
the target. rootOldGrey implies the existence of grey node. invStart also implies
that if there exists an unmarked node, then there must exist an isolated node, as
the number of grey and unmarked nodes equal to the number of blue and isolated
green nodes while there is a bijective function from grey nodes to blue nodes.
Therefore non-applicability of copy items implies that there is no edge from a
grey node to an unmarked node, which means unmarked nodes are not reachable
from grey nodes. Then because invStart asserts grey nodes are reachable from
the start node in Old area, the unmarked nodes must not reachable from the
start node so that reachOldGrey holds. Hence, X5 holds.

(6) Non-applicability of disconnect implies there are no edges between any
grey nodes and any blue nodes. invStart implies that edges connecting OldG

and NewG are only edges incident to grey and blue nodes. Therefore, the non-
applicability implies OldG and NewG are not connected which means noconnect
holds so that Y1 holds. ut

6.2 Total Correctness

A graph program P is totally correct with respect to a precondition c if the
graph program is partially correct, also will not fail or diverge, with respect to
c [14]. We have shown that the program cheney is partially correct, so we only
need to show that cheney cannot fail or diverge.

Let us recall cheney at Fig. 2. The command sequence in the program consists
of one rule set call and four loop commands. Precondition clearly stated the
existence of an unmarked root node. Then, because precondition guarantees



the same number of unmarked and green nodes, there must exists at least one
green node as we have an unmarked root node. Therefore, the match of the left-
hand side of copy root is guaranteed by precondition so it will not fail. By
the semantic of loop command, the other commands in the sequence will not fail
either so that the absence of failure in the execution of cheney is guaranteed.

The rule copy root is only applied once, so it will not diverge. For loop
commands, elimination of an element is clearly can guarantee the absence of di-
vergence. The rule copy items, copy edge, copy loop, and disconnect elim-
inate unmarked nodes, unmarked edges between two grey nodes, unmarked loops
on grey nodes, and edges between grey and blue nodes repectively.

7 Related Work

In this study, we implement Cheney’s copying garbage collector [3] in GP 2 and
reason about it. Several works in verification of Cheney’s algorithm stated the
difficulties in verifying the algorithm, such as in reasoning about reachability in
graphs [8] and verifying programs involving cyclic data structures.

Torp-Smith et.al. [16] is the extended version of [2]. In the study, they ex-
tend standard separation logic so that it can be used in cyclic data structures.
Some remarks are stated to show the advantage in using local reasoning for the
verification, such as ensuring an assignment is not affecting some assertions. The
isomorphism between data structures from two different points in time; before
and after a program execution; is also introduced in the study. Again, separating
conjunction is used to reason about isomorphism as the update of bijective func-
tion can be seen in local reasoning. However, we think their proof is complicated
as there are so many rules involved yet the validity of the rules is not provided.
Moreover, there are 57 pages in the journal paper to discuss the verification of
Cheney’s garbage collector. They use about 48 triples in the proof, but reasoning
about each step takes a lot of work as well.

In McCreight’s PhD thesis [7], they use the definition of a morphism from
[16] and study about mechanised verification of Cheney’s algorithm. They also
use separation logic for their verification. Their proof is detailed as they see all
possible cases to mechanise the verification, but they use various lemmas, and it
is not clear how the lemmas are proved. The proof is separated into five parts.
The verification of each part requires between one and seven pages. However,
to fully understand the verification, we need to understand the specification of
each part which is not more concise than the verification itself. In total, there
are about 50 pages of the thesis that deal with Cheney’s algorithm.

This may result from the level difference in the language, as they use low-
level programming and we use a programming language that abstracts from
details of memory management such as address arithmetic. The other studies
use separation logic for local reasoning in the verification. However, because
sharing mostly exists in graph problems including garbage collector, they need
to extend separation logic so that it can be used in the verification of Cheney’s
algorithm. The extension itself is not easy, and proofs following this extension



is complex. In contrast, there is no need for us to extend the existing proof
calculus for reasoning about our graph program. By using the existing proof
calculus, which is sound in the sense of partial correctness, we are able to show
verification of cheney in a simple way with clear justification for each step of
verification.

Another extension of separation logic for the verification of Cheney’s garbage
collector can be found in [5]. The paper introduces the notion of sharing in sepa-
ration logic, which is called ramification. This allows local reasoning while global
effects are still accounted for when they are required, enabling reasoning about
programs that manipulate data structures with unrestricted sharing. Different
from [2, 16], the paper uses inductive graph predicates and does the reasoning
on the level of mathematical graphs. It is claimed that the verification is more
concise than in other work. This is indeed the case as there are only about two
pages to discuss Cheney’s garbage collector and its verification. However, we find
it difficult to see the reasoning about implications given in the proof. In addition,
one needs to understand the intricate theory about ramification and its use in
verification.

8 Conclusion and Future Work

We have implemented Cheney’s copying garbage collector in GP 2 and veri-
fied the program using Hoare logic. To be compared to the previous work we
described in the previous section, they use local reasoning and argue that this
helps them so that their reasoning is less complicated [16]. To be compared with
our work, the use of marks in our program implicitly helps us in separating prop-
erties that are not affected as we can focus on structures with specific marks.
Similarly, the update of bijective function in our case can be seen with the use
of marks.

We show a proof tree for the partial correctness of the program, and only
from this, we argue that the proof is more straightforward than other proofs
that have been done for the Cheney’s algorithm. Moreover, in our work we use
proof rules that are proven to be sound to connect one triple to another. But
in other literature about verification of Cheney’s algorithm, they do not have
a clear reasoning about soundness of proof rules they use. Moreover, from the
proof sketch, we only use 22 triples while the proof sketch in [16] has about 48
triples. This shows how concise our proof if we compare to theirs.

Our proof is more concise than others partly because we still use arbitrary
mathematical language for the assertions, unlike others that have defined formal
assertions for this. Although there are E-conditions [12] that can be used to
express properties of graphs in graph programs, we still need to extend this. We
need an assertion that can describe a condition between two graphs that exist at
a different point in time, but E-condition we have now only expressed the graph
that exists at one point in time. Moreover, E-condition that based on first-order
logic is not enough to represent properties we need, e.g. the existence of two area
Old and New. M-condition [15] can cover this, but the formal definition of this is



yet to be defined. However, none of these can be used to express the isomorphism
between two graphs that exist in different time. In the future, we plan to look
the transduction in monadic second-order logic [4] and have assertion language
that can express isomorphism between two structures.
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A Abstract Syntax of Graph Programs

In Figure 5 we give the syntax of the subset of GP 2 programs that we use in
this paper.

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MainDecl
MainDecl ::= Main ‘=’ ComSeq
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall [‘!’]
RuleSetCall ::= RuleId | ‘{’ RuleId {‘,’ RuleId} ‘}’

Fig. 5. Abstract syntax of a subset of GP 2 programs

B Operational Semantics of Graph Programs

This appendix reviews the semantics of graph programs (except for the defini-
tion of rule applications), which is given in the style of structural operational
semantics [9]. In this approach, inference rules inductively define a small-step
transition relation → on configurations. In our setting, a configuration is either
a command sequence together with a host graph, just a host graph or the special
element fail:

→ ⊆ (ComSeq× G)× ((ComSeq× G) ∪ G ∪ {fail}).

Configurations in ComSeq× G, given by a rest program and a host graph, rep-
resent states of unfinished computations while graphs in G are final states or
results of computations.

Figure 6 shows the inference rules for the GP 2 commands used in this paper.
The rules contain meta-variables for command sequences and graphs, where R
stands for a call in category RuleSetCall (as defined by the grammar in Figure 5),
P and Q stand for command sequences in category ComSeq, and G,H stand for
graphs in G. The transitive closure of → is denoted by →+. We write G⇒R H
if H results from host graph G by applying the rule set R, while G 6⇒R means
that there is no graph H such that G⇒R H (application of R fails).

C Proof Trees

Proof trees are inductively defines as follows.

Definition 8 (Proof tree [12]). If {c} P {d} is an instance of an axiom X
then

X
{c} P {d}



[call1] G ⇒R H
〈R, G〉 → H

[call2]
G 6⇒R

〈R, G〉 → fail

[seq1]
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉 [seq2]
〈P, G〉 → H

〈P ;Q, G〉 → 〈Q, H〉

[seq3]
〈P, G〉 → fail

〈P ;Q, G〉 → fail

[alap1]
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉 [alap2]
〈P, G〉 →+ fail
〈P !, G〉 → G

Fig. 6. Semantic inference rules

is a proof tree. If {c} P {d} can be instantiated from the conclusion of an in-
ference rule X, and there are proof trees T1, · · · , Tn with conclusions that are
instances of the n premises of X, then

X
T1 · · · Tn

{c} P {d}

is a proof tree.


